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Abstract: This study reports on the local exploration of magnetic field effects in semiconductors,
including silicon (Si), germanium (Ge), gallium arsenide (GaAs), and indium phosphide (InP) using
the time differential perturbed angular correlation (TDPAC) technique. TDPAC measurements were
carried out under external magnetic fields with strengths of 0.48 T and 2.1 T at room temperature, and
77 K following the implantation of 111In (111Cd) probes. Defects caused by ion implantation could
be easily removed by thermal annealing at an appropriate temperature. The agreement between
the measured Larmor frequencies and the theoretical values confirms that almost no intrinsic point
defects are present in the semiconductors. At low temperatures, an electric interaction sets in. It
stems from the electron capture after-effect. In the case of germanium and silicon, this effect is well
visible. It is associated with a double charge state of the defect ion. No such effects arise in GaAs and
InP where Cd contributes only a single electronic defect state. The Larmor frequencies correspond to
the external magnetic field also at low temperatures.

Keywords: semiconductors; dynamic quadrupole interaction; magnetic dipole interaction; γ-γ
angular correlations

1. Introduction

Semiconductors such as germanium (Ge), silicon (Si), gallium arsenide (GaAs), and
indium phosphide (InP) are widely used in electronics and optics. Silicon has an extremely
stable structure and is an effective thermal conductor, which is why it is widely applied
in the manufacture of integrated circuits (ICs) and nanoelectronics. The most significant
advantage of Si is the high mobility of its electron holes, which enables its use in high-speed
p-channel field-effect transistors that are needed for CMOS logic [1]. Germanium has been
widely used in electronic and optoelectronic devices and has recently been considered
for spintronics and quantum computing applications [2]. GaAs and InP can efficiently
emit light and are thus used in laser diodes. Moreover, they are the best candidates in
electronics for manufacturing high-power and high-frequency electronics, solar cells, and
optical windows [3].

The intrinsic carrier concentration, which plays a key role in the conductivity of
semiconductors, is the number of electrons in the conduction band or the number of holes
in the valence band in the intrinsic material. This number of carriers depends on the
band gap and on the temperature of the material [4]: ni ≈

√
NcNv exp

(
− Eg

2kBT

)
, where

ni is the intrinsic carrier concentration or electron (hole) concentration, Nc and Nv are
the effective densities of the state of the conduction band and valance band, respectively,
Eg is the band-gap energy, kB is Boltzmann’s constant, and T is temperature. At the extreme
of very low temperature, the expression for intrinsic carrier concentration is complex and
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obeys Fermi–Dirac statistics [5,6]. The concentration of these carriers depends on the
temperature and the band gap of the material. Among the four studied semiconductors,
Ge has the narrowest band-gap and GaAs has the largest band-gap (Eg(Ge) < Eg(Si) <
Eg(InP) < Eg(GaAs)) [7]. Therefore, at a certain temperature, Ge has the greatest carrier
concentration. A simple way to observe how the carrier concentration affects conductivity
is to increase the temperature. The heat will excite electrons into the conduction band,
leading to an increase in the intrinsic carrier concentration. However, comprehending the
effects of carrier concentration on semiconductor conductivity at the nanoscale requires a
precise technique. Time differential perturbed angular correlation (TDPAC) is one of the
most promising techniques for addressing this need. Moreover, magnetic fields are also a
powerful tool to investigate the properties of charge carriers in semiconductors. The energy
levels of a population of free electrons, upon the application of magnetic fields, become
quantized into a set of magnetic sub-bands called Landau levels [8].

Besides the intrinsic carrier concentration, defects also have a significant impact on
semiconductors. Intrinsic defects (such as vacancies and self-interstitials) and extrinsic
defects (such as dopants and impurity atoms) may either improve or degrade the qual-
ity of the semiconductor, depending on its electrical properties and environment. Many
researchers have studied defects in semiconductors using various techniques, such as Elec-
tron Paramagnetic Resonance (EPR) and Electron–Nuclear Double-Resonance (ENDOR)
spectra which are commonly used to analyze defects in semiconductors. These magnetic
resonance spectra, properly interpreted, often contain highly detailed microscopic infor-
mation about the structure of the defects [9]. In addition to these methods, the TDPAC
is an experimental tool to study point defects in semiconductors. Cordeiro et al. investi-
gated microscopic defects in pure single crystals of silicon using the TDPAC method to
calculate the electric field gradient (EFG) at probe sites at different temperatures [10]. A
brief overview of TDPAC measurements in semiconductors has been provided in [7,10].
This study uses a combination of TDPAC and external magnetic fields to analyze magnetic
hyperfine interactions at lattice sites in semiconducting materials. We demonstrate how
the TDPAC technique examines the effects of carrier concentration on the conductivity of
semiconductors and how it can detect defects in semiconductors at the atomic level.

2. Materials and Methods
2.1. The Time Differential Perturbed Angular Correlation (TDPAC) Method

The TDPAC technique is briefly described in this section with a particular focus on
magnetic interactions. More details can be found in [11,12]. When radioactive nuclei with
suitable nuclear moments decay through a cascade of two gamma rays in the presence of
an external magnetic field, a hyperfine interaction takes place within the lifetime t of the
intermediate state between the two gamma rays. Specifically, 111In decays to 111Cd through
electron capture from its proper electronic shell and the emission of gamma rays. 111In has
a relatively long lifetime value of 2.8 days, making it suitable for laboratory use. 111Cd
shows the following nuclear parameters: Q = +0.83(13) b, and µ = −0.7656(25) µN [11].
This enables the examination of magnetic hyperfine interactions at a time scale up to
around 400 ns, owing to the relatively long half-life (84.5 ns) of the intermediate state. The
interaction between the magnetic field and the magnetic moment µ of the intermediate
state of the probe nucleus is called magnetic hyperfine interaction. This interaction causes a
perturbation in the angular correlation between two gamma rays emitted from the excited
states of 111Cd. The transition frequencies, or Larmor frequencies, (ωL), of the sub-levels
in the intermediate state can be measured using perturbed angular correlation (PAC)
spectroscopy by fitting the experimental spectra with the perturbation function,

R(t) = A22

{
f
[
s0 + s1 cos(ωLt) exp

(
−(∆ωLt)2/2

)
+ s2 cos(2ωLt) exp

(
−(2∆ωLt)2/2

) ]
+ (1− f )

}
(1)

which provides information on the magnetic hyperfine interactions [13]. For pure magnetic
dipole interactions, two frequencies are observed, ω1 = ωL and ω2 = 2ωL. The coefficient
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f is the amplitude of the modulation that reflects the occupation of nonequivalent probe
sites in the structure of the investigated sample, and A22 is the anisotropic coefficient of the
γ-γ cascade. The amplitudes sn (n = 0, 1, 2) must be determined through diagonalization of
the Hamiltonian of the interaction. The term ∆ωL in the exponential represents the width
of the distribution about the frequency of modulation and is caused by slight perturbations
in the vicinity of the probe atom. A Lorentzian frequency distribution [14] was assumed
for these experiments.

The precession frequency (Larmor frequency) of angular momentum in the magnetic
field can be theoretically calculated by following expression [11]:

ωL = −µ

I
Bz (2)

where Bz is the magnetic hyperfine field, I is the nuclear spin angular momentum of the
intermediate state of a radioactive nucleus, and µ is the magnetic moment of spin I.

In the presence of both magnetic and electric hyperfine interactions, the analysis of
the combined interaction in the TDPAC spectra is complex. Its formalism can be found in
the work of Schell et al. [15].

2.2. Experiment

The semiconductors considered in this study are Ge, Si, InP, and GaAs. All samples
are intrinsically polycrystalline with 0.5 mm thickness. The 111In probe implantations
were carried out at the Bonn Radioisotope Separator, BONIS, at the Helmholtz-Institut
für Strahlen- und Kernphysik (HISKP), University of Bonn, Germany [16,17]. 111In was
chosen as one of the best radioactive probes to study semiconductors using the TDPAC
technique [18–20]. The dose was less than 1013 ions/cm2 and the concentration of doping
ions was about 1019 ions/cm3. In the present experiments, the dose is on the order of
1012 ions/cm2. Due to this very low concentration of doping ions, the tracers are considered
to be only a weak dopant that does not influence the overall properties of the solid. The
detailed parameters of implantation, including the implantation energy and depth, incident
angle, and fluence of ions, can be found in Table 1.

Table 1. Detailed parameters of implantation [7].

Implantation
Energy (keV) Incident Angle (o) Fluence/Dose

(ions/cm2)
Implantation
Depth (nm)

Si 90 10 8.1 × 1012 12
Ge 160 10 3.8 × 1012 30

GaAs 160 10 6.3 × 1012 30
InP 160 10 1.5 × 1012 30

Ion implantation is a powerful technique for embedding probe atoms into materi-
als, because it avoids chemical interactions between any solution and the sample under
investigation. The drawback of this method is that the implantation processes damage
the lattice structure; however, in most cases, the damage can be repaired using a rapid
thermal annealing apparatus. All samples were annealed in a vacuum for 2 min [7] at the
appropriate temperatures chosen with respect to the melting point and prior experience:
873 K (Ge) [7,21], 1173 K (Si) [7,21], 973 K (GaAs) [7,22], and 923 K (InP) [7,23].

After annealing, the samples were mounted into magnets with strengths of 0.48 T
or 2.1 T and were then measured at room temperature and 77 K in liquid nitrogen using
the TDPAC spectroscopy. Detailed descriptions of the 0.48 T and the 2.1 T setups have
been presented in [24–26]. The 2.1 T magnet could not be used for measurements in liquid
nitrogen (77 K) because of its large size. It is a cylinder with diameter d = 12 cm and height
h = 10 cm, making it impossible to place the whole system (2.1 T magnet and sample) into a
small liquid nitrogen dewar. If a larger dewar were used to contain this system, the distance
from the sample to each detector would be too great (>6 cm) and the gamma signals would
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be too weak to be recorded. The magnets containing the samples were placed at the center
of a planar configuration of four detectors, with the magnetic field oriented perpendicular
to the plane as illustrated in Figure 1.
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Figure 1. Schematic diagram of the magnetic field setup (0.48 T): Semiconductors doped with a
radioactive isotope were placed in a uniform magnetic field, where (a) represents the permanent
magnets, (b) is an iron casing to shield the magnetic field, (c) is the position of the sample, and (d) are
the detectors.

3. Results and Discussion
3.1. Magnetic Interaction at Room Temperature

The experimentally measured Larmor frequencies are shown in Table 2 and agree
well with the computed values for isolated radioactive atoms (i.e., not implanted in a
material). For the intermediate state of spin I = 5

2} (} = 1.05× 10−34 Js), the magnetic
moment is µ = −0.7656(25) µN (µN = 5.05 × 10−27 J/T: the nuclear magneton) [11]. With
magnetic fields of Bz = 0.48 T and 2.1 T, the calculated values of the Larmor frequency
using expression (2) are 6.9 Mrad/s and 30.9 Mrad/s, respectively. The agreement between
these experimental values and the free space calculated values confirms that no defects
are present in the semiconductors in the probe vicinity. The spectra in Figure 2 show a
constant precession frequency and constant amplitude, because the magnetic fields have a
constant magnitude and direction during the measurement. The distribution of the Larmor
frequencies is extremely narrow (∆ωL ≈ 0). The environments of the probe nuclei thus
have cubic symmetry and contain practically no intrinsic point defects in the vicinity of the
probe ions. After the annealing treatment, all probe atoms replace the host atoms at lattice
sites of cubic symmetry [18–20]. The atomic size discrepancy between the In-probe and
the lattice atoms (Table 3) might cause a lattice distortion which represents a mechanical
dilatation center induced by the probe. Such a dilatation center does not alter the signal at
the probe in cubic symmetry. The intrinsic point defect concentration is too low to be itself
detected by the TDPAC technique as the probability of finding another defect in the direct
vicinity of the probe is very low.
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Table 2. Experimental Larmor frequencies ωL, volume magnetic susceptibility χv, intrinsic carrier
concentration ni, electron µe and hole µh mobilities at 300 K.

Sample ωL [Marad/s]
χv

(*) ni (cm−3)
µe µh

0.48 T 2.1 T [cm2/Vs] [cm2/Vs]

Si 6.62(2) 33.55(2) −0.531 ×
10−6 [27]

1.02 × 1010

[28]
1500 [29] 450 [30]

Ge 8.04(1) 34.35(4) −1.150 ×
10−6 [27]

2.33 × 1013

[31]
3900 [32] 1900 [32]

InP 6.63(1) 33.48(4) −1.504 ×
10−6 [33]

3.3 × 107

[34]
5400 [35] 150 [36]

GaAs 7.18(2) 33.23(7) −1.225 ×
10−6 [27]

2.1 × 106

[37]
8865 [38] 400 [39]

(*) These values are expressed as volume magnetic susceptibility by the relation χv = ρχm
M where ρ is density near

room temperature (g/cm3), M is molar mass (g/mol), χm is molar magnetic susceptibility (cm3/mol).
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Without a magnetic field, there is no perturbation of the angular correlation (Figure 2).
This means that neither electric field gradients are present, nor magnetic fields. This is
expected in a cubic crystal, if neither a defect atom nor an electronic defect is associated
with the probe ion. Under an external magnetic field, the precession of the nuclei is
very well visible. As far as the value of the magnetic moment is known, the precession
frequencies correspond to the expected values of open space. Table 2 summarizes the
observed frequencies. The slight diamagnetic susceptibility of all four materials does not
change the observed precession frequencies in a systematic manner. In particular, under a
large external field, the frequencies are all identical within experimental error. For the low
applied field, a small difference in the Larmor frequencies can be found between the four
semiconductors. The measured Larmor frequencies, around 33 Mrad/s, are similar to the
32(1) Mrad/s in the study by Schell et al. [15]. The 6% difference from the value expected
(30.9 Mrad/s) from previous determination of the magnetic moment of the nucleus [11]
likely occurs due to the structure of the 2.1 T magnet pot. It consists of two cylindrical
permanent magnets housed in a cylinder made of a combination of aluminum, lead, and
Armco iron [25]. Positioning the sample at the right field spot is a potential systematic error.

3.2. Electric Quadrupole and Magnetic Dipole Interactions at 77 K

For GaAs and InP, the angular perturbation without a magnetic field remains unper-
turbed, also at 77 K. So, nothing changes compared to room temperature. For Ge and
Si, a perturbation is well visible, prompting questions as to why this occurs. As the mea-
surements were made in the identical crystals, the presence of electric defects/dopants
cannot have changed with respect to room temperature. Furthermore, no change in crystal
structure arises.

One peculiarity about the isotope 111In must be known to understand the observed
spectra. To feed the nuclear decay, it captures an electron from its proper electronic shell
in order to transform to 111Cd, which is the nucleus of the actual measurement. Typically,
this electronic state (hole) is refilled within the timeframe of atomic shell rearrangement (in
the picosecond range). Thus, the atom at the time of measurement (first pixels after 0.5 ns)
is already in a static environment. For very low temperatures, however, the electronic
cascade may have been incomplete, which is called the after-effect [41]. This means that an
outer shell electronic state may survive for a sufficient period of time to perturb the angular
correlation at longer times. For this to happen, a non-symmetric electric environment must
be generated from this residual hole at the probe. The simplest configuration is a hole
state in an adjacent atom or on the bond to an adjacent atom. Indium is present in InP.
Cd has practically the same electronic shell as In. Thus, atoms in the direct vicinity of the
probe provide electronic states at the same levels as the probe atom itself. The tunneling
of the hole away from the probe is thus easy (quantum tunneling in chemical bonds [42]),
the spectrum remains unperturbed. GaAs is more complex. Like in InP, In will occupy
a Ga-site due to the matching valence. The bond to the adjacent As is covalent, but the
covalent bond has a polar character due to the different valences of the alloy atoms. For
the nuclear reaction, one such bond electron must be used to refill the inner shell of Cd.
The residual electronic state on the bond is a single trap state in the band gap. Its refilling
apparently is also sufficiently fast in GaAs as to not perturb the angular correlation.

In silicon and germanium, Cd2+ is potentially a doubly charged defect. Thus, it can
be Cd2+, Cd+ or Cd0, for which the latter is equivalent to an unaltered band of the semi-
conductor. A perturbation in the spectra will be visible, if an alteration of the electronic
environment happens past 0.5 ns or up to 400 ns, the latter being the maximum measure-
ment time. Strong changes will arise from 1 ns to 50 ns time constant, for lower frequencies
the influence will be small. Thus, in Si as well as Ge, the electronic shell is altered in
this time constant range at 77 K. It must be understood that any geometrically symmetric
environment will not generate a perturbation of the angular correlation, because the electric
field gradient vanishes. Thus, a cubic crystal and a cubic crystal with a symmetric electronic
defect state will yield no perturbation. Only if the electronic defect state is located on a
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chemical bond to the neighboring atoms is the symmetry broken and a perturbation of
the angular correlation arises. The results of this section are thus that a hole localized on
a bond to an adjacent Si (Ge) atom is populated or depopulated in megahertz up to the 1
GHz range. This defect constitutes the electric field gradient.

Referring to Table 2, a correlation between the occurrence of the after-effect with
electron mobility seems to be present, while it seems unrelated to hole mobility. The picture
becomes more complex if one considers the mobility data at 77 K. At this temperature,
there is no correlation between electron or hole mobilities (Table 4) with the occurrence of
the after-effect. Particularly, there is no direct influence of intrinsic carrier concentration of
the hosts on the after-affect because the number of intrinsic carrier concentrations of the
samples at 77 K (Table 4) are extremely low compared to those at 300 K (Table 2). Thus, the
fact that Cd represents a doubly charged defect in Si as well as Ge retards the refilling of
the electronic shell into the few nanoseconds range and generates the after-effect. In the
compound semiconductors InP and GaAs, Cd is a singly charged defect. The tunneling
away of the residual hole or refilling with free carriers from the band states is sufficiently
fast. Considering the very low level of intrinsic carrier density at this temperature, an
enhanced tunneling probability is the most likely process to remove the electron from the
Cd-defect.

Table 4. The experimental Larmor, quadrupole frequencies without external magnetic field (B = 0)
and with B = 0.48 T, intrinsic carrier concentration ni, and electron µe and hole µh mobilities at 77 K.

Samples

T = 77 K,
B = 0 T = 77 K, B = 0.48 T

ni [cm−3]
µe [cm2/Vs] µh [cm2/Vs]

ω0
[Marad/s]

ω0
[Marad/s]

ωL
[Marad/s]

Si 14.88(9) 3.99(3) 6.49(1) 1.9 × 10−20 [43] 10,000 [44] 10,000 [45]

Ge 2.89(2) 0 8.25(1) - 20,000 [46] 400,000 [47]

InP 0.64(1) 0 6.45(2) - 300,000 [48] 14,800 [36]

GaAs 0.84(1) 0 7.12(2) 2.3 × 10−34 [49] 200,000 [38] 10,272 [50]

For measurements under the magnetic field, the samples were mounted into the 0.48 T
magnet as shown in Figure 1 and then placed in liquid nitrogen (77 K). The PAC spectra and
fits of the annealed samples are presented in Figure 3. The Larmor frequencies (ωL) and
dynamic quadrupole frequencies (ω0) are given in Table 4. They are practically identical
with those at room temperature. Thus, no additional effect on the magnetic interaction
is observed. The crystal yields the same numbers. For GaAs and InP, no dynamic elec-
tric interaction is observed for all measurement temperatures (ω0 ≈ 0) [7] and, therefore,
only the magnetic interaction is considered. For Si, a small contribution of a quadrupole
frequency is measured at 77 K under the application of the external magnetic field:
ω0(Si) ≈ 4 Mrad/s. No quadrupole interaction is found for Ge: ω0(Ge) = 0 Mrad/s
(without an external magnetic field: ω0(Si) ≈ 15 Mrad/s and ω0(Ge) ≈ 3 Mrad/s). The
corresponding R(t) spectra are shown in Figure 3 (beige layer). The dynamic interaction
does not contribute to the spectra significantly under the magnetic field. As we can only
access a finite time in this type of measurement, the effect of electronic re-arrangement may
be hidden in the statistical background at long measurement times.

4. Conclusions

The TDPAC technique was used in four classical cubic semiconductors. As expected
for the symmetry of the crystal, no electric field gradients are observed. This also means
that no adjacent defects are localized close to the substitutional probe ion In. The externally
applied magnetic fields generate Larmor frequencies practically identical to open space.
No influence of the semiconductor itself is seen for the magnetic interaction.
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The interesting effects arise at low temperature (77 K) when electronic charge carriers
become scarce. InP and GaAs still show electrically unperturbed spectra and the effect of an
unaltered magnetic interaction. In contrast, silicon and germanium exhibit the after-effect.
In these two semiconductors, the Cd probe is a doubly charged defect. Its electric recon-
struction after electron capture takes a longer time than in the other two semiconductors.
We explain this difference by two factors: First, the compound semiconductors have to only
provide a single electron, because In substitutes a trivalent lattice site (either In itself or
Ga) and Cd then only forms a single electronic trap state. In silicon and germanium, the
after-effect is visible, which means that refilling of the electronic states is retarded. This also
means that not only is one electron missing after the electron capture in Si and Ge, but via
Auger-like effects, Cd is initially doubly charged with respect to the lattice. The refilling of
these two states takes a longer time than to only refill one empty state, despite the much
higher electron and hole mobilities at low temperatures.

A second effect can be related to an enhanced tunneling probability from Cd to the
adjacent In-atoms in InP. As the electronic shells are practically identical, any vacant
intermediate electronic state can be refilled from adjacent In-atoms as the same electronic
states prevail.

Under the magnetic field, the differences become negligible. All four semiconductors
show the Larmor frequency, and only in germanium is a small contribution by electronic
restructuring found in the fits. It can be interpreted as stemming from the same process as
in the field free case.
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